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Abstract

To simulate turbulent convection at high Rayleigh number (Ra), we propose a new thermal lattice-BGK (LBGK) model based on
large eddy simulation (LES). Two-dimensional numerical simulations of natural convection with internal heat generation in a square
cavity were performed at Ra from 106 to 1013 with Prandtl numbers (Pr) at 0.25 and 0.60. Simulation results indicate that our model
is fit to simulate high Ra flow for its better numerical stability. At Ra = 1013, a global turbulent has occurred. With a further increase
in Ra, the flow will arrive in a fully turbulence regime. The Nusselt–Rayleigh relationship is also discussed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Turbulent thermal convection is ubiquitous [1] in nature
and technology, and serves important and diverse pur-
poses. Natural convection (NC) flows due to internal heat
generations has been lately receiving increase attention
because of its relevance to nuclear safety issues. While
the Rayleigh–Bénard convection (RBC) has been exten-
sively studied, the literature on NC driven by internal heat
is confined to fewer studies (see Ref. [2], for a list of
references).

Turbulent convection sets in at high Ra [1,3–5]. How-
ever, it is still a challenge for both experiments and numer-
ical simulations to capture the turbulent flow motion at
high Ra. In fact, the highest Ra attainable in an apparatus
of a given size is usually quite limited for a fluid such as
water. Because of the unknown properties of the core melt
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at high temperatures, the researchers were unable to repro-
duce adequate accident conditions. Moreover, it is not a
simple task to measure Pr dependence in convection turbu-
lence by experiments. Therefore, numerical simulations are
required to predict the turbulent flows especially at very
high Ra.

For the smallest scales in the turbulent flows at high Ra

are of the same magnitude with the Kolmogorov micro-
scales, flows turbulence modeling becomes necessary. A
viable alternative to the direct numerical simulation
(DNS) is the method of LES [3,6], a time-honored method
in engineering fluid mechanics and meteorology, which
may be the only way to simulate the time-dependent phys-
ics in its full complexity while keeping a reasonable accu-
racy at the largest scales. Horvat et al. [2,7] simulated the
NC flow with internal heat generation in a square cavity for
a wide range of Ra and Pr: Ra 106–1013 and Pr 0.25–8 by
using LES.

Since the NC flows at high Ra have complex behavior,
efficient methods are still needed for further studies, espe-
cially for 3D problems. The LBGK method is a candidate
for such methods [8,9]. For non-isothermal flows, several
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Nomenclature

c particle speed
C Smagorinsky constant
D thermal diffusivity
Dt turbulent thermal diffusivity
~ei discrete velocity
fi, Ti force term in Eqs. (2) and (5)
g gravity
gi, hi distribution function for velocity and tempera-

ture field
geq

i ; h
eq
i equilibrium distribution function for velocity

and temperature field
L length of simulation domain
I volumetric heat generation
Nu Nusselt number
Nuup Nusselt number for upper surface
p pressure
Pr Prandtl number (=m/D)
Prt turbulent Prandtl number
Ra Rayleigh number (=gbIL3/mD)
Sij strain rate tensor
T simulation time interval
~u fluid velocity vector
~x phase space

Greek symbols

b temperature dilatation
� Knudsen number
h dimensionless temperature
m kinematic viscosity
mt turbulent eddy viscosity
s relaxation time
s~u; s~h relaxation time for velocity and temperature

field
x = s�1 relaxation parameter
xi the weights for equilibrium distribution function
D filter width
Dt time step
Dx, Dy grid spacing in x- and y-directions

Subscripts and superscripts

a, b spatial index
i discrete velocity direction
total total index
0 initial index
� filter operator
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temperature LBGK (TLBGK) models have been developed
[10–12]. However, most of these models suffer from compli-
cated evolution equations [12] or severe numerical instabil-
ity [13]. Recently, Guo et al. [14] propose a new TLBGK
model with a robust boundary scheme. Although the model
holds if viscous heating effects and compression work are
negligible [15] and the boundary conditions simulate only
imposed temperature [16], it has proved to have good stabil-
ity as well as simplicity. Using the model, Shi [17] had suc-
ceeded in simulating the NC flows due to internal heat
generation in a square cavity at Ra 106–1012 and Pr 0.25
and 0.60. However, the LBGK method is still viewed as a
DNS so that it is limited to resolve relatively low Ra flows.
For example, when Ra = 1012 and Pr = 0.25, the simulation
with the TLBGK model results in numerical instability. To
extend the LBGK method to turbulent flows, it is natural to
incorporate the existing turbulent models into the frame-
work of the LBGK method. There are some paradigms
which succeed in combining LES with the LBGK model
to simulate isotherm flows at high Re [18–20]. Inspired by
this idea, we propose a new TLBGK model based on LES
which directly introduce the Smagorinsky eddy viscosity
[6] to the TLBGK model. The approach will be presented
in the second part of the paper.

To understand heat transfer at high Ra, the relationship
between the Nusselt number (Nu) and Ra has drawn much
attention as a scaling law [21–23]. However, the issue of the
existence of an asymptotic regime that is supposed to occur
at very high Ra remains an open one. Theory [21] predicted
that a full turbulent regime arises in such a state Nu = Rab

with b = 1/2. But large amounts of convection experiments
[4,22] revealed that some other exponents b such as 2/7 or
1/3 existed. Moreover, a recent theoretical study [23] has
suggested that the Nu(Ra) relation should not follow a
strict power-law. As to the NC of internally heated fluids,
a considerable amount of experimental and analysis effort
was focused on determining the averaged Nu numbers on
the cooled surface in many geometries such as fluid layer,
rectangular, semicircular and elliptical cavities. Although
the geometries were different, the relationship Nuup(Ra)
for the upper surfaces are quite similar [24]. Hence, the
question arises of whether or not a simple power-law rela-
tionship between Nu and Ra exists in turbulent natural
convection due to internal heat generation. Since the fluid
used in the above mentioned literatures were mostly water
(Pr = 2.5–7) and Freon (Pr = 8–11), to answer the ques-
tion, large numbers of numerical simulations at a large
range Ra with relative low Pr are needed to be performed.

In the paper, we simulate natural convection flows due
to internal heat generation in a cavity for Ra up to 1013

with Pr at 0.25 and 0.60 using the TLBGK model based
on LES. Simulation results with isotherms and the time-
boundary-averaged Nu vs. Ra figures are presented in the
third part of the paper. Meanwhile, the relationship
Nu(Ra) is discussed. In the last part, conclusions are drawn
based on these simulation results.
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2. The numerical algorithm

2.1. The TLBGK model [14]

The fluid in the present work is governed by 2D time-
dependent Navier–Stokes equations using Boussinesq
approximation to include buoyancy forces, and the dimen-
sionless forms read [17]

r �~u ¼ 0 ð1aÞ
o~u
ot
þ~u � r~u ¼ �rp þ mD~uþ PrH

~g
j~gj ð1bÞ

oH
ot
þ~u � rH ¼ DDHþ D ð1cÞ

A complete description of the scaling procedure may be
found in Ref. [25]. The boundary conditions are taken to
be~u ¼ 0 and H = 0 on all the four walls; the initial condi-
tions are set to be ~u ¼ 0; H = 0 for all cases.

Based on the idea of the TLBGK model [14], we add a
force term fið¼ Pr

2c ai~ei � ~gj~gjHÞ to the evolution equation for
the velocity field to recover the force term in Eq. (1b)
(see Appendix A for details):

gið~xþ c~eiDt; tþDtÞ�gið~x; tÞ¼�
1

s~u
ðgið~x; tÞ�geq

i ðp;~uÞÞþDtf i

ð2Þ
where ai = di2 + di4 and i = 0,1, . . . , 8. The particle speed
c = Dx/Dt, Dx and Dt are the lattice grid spacing and the time
step, respectively. gið~x; tÞ is the distribution function and s~u is
the relaxation time for the velocity field. The discrete veloc-
ities~ei of the d2q9 LBGK model [25] are defined as

~ei ¼

ð0; 0Þ; i ¼ 0

ðcosði� 1Þp=2; sinði� 1Þp=2Þ; i ¼ 1; 2; 3; 4ffiffiffi
2
p
ðcosði� 5Þp=2þ p=4; sinði� 5Þp=2þ p=4Þ;

i ¼ 5; 6; 7; 8

8>>><
>>>:

For the values of the parameters appeared in the equilib-
rium distribution function geq

i of the TLBGK model [14]
are replaced by r = 5/12, k = 1/3, c = 1/12, geq

i can be
simplified as

geq
i ¼

� 5p
3c2
þ sið~uÞ; i ¼ 0

p
3c2
þ sið~uÞ; i ¼ 1; 2; 3; 4

p
12c2

þ sið~uÞ; i ¼ 5; 6; 7; 8

8>>>>><
>>>>>:

ð3Þ

where sið~uÞ ¼ xi 3
~ei �~u

c
þ 4:5

ð~ei �~uÞ2

c2
� 1:5

j~uj2

c2

" #
, x0 = 4/9,

xi = 1/9 (i = 1,2,3,4) and xi = 1/36 (i = 5,6,7,8).

The flow velocity, pressure and kinetic viscosity are
given by

~u ¼
X8

i¼1

c~eigi; p ¼ 3c2

5

X8

i¼1

gi �
2j~uj2

3c2

 !
;

m ¼ c2

3
s~u �

1

2

� �
Dt ð4Þ
Similarly, we utilize an LBGK equation with d2q5 lattice
[27] for Eq. (1c)

Hið~xþ c~eiDt; t þ DtÞ �Hið~x; tÞ

¼ � 1

sH
ðHið~x; tÞ �Heq

i ðp;~uÞÞ þ DtT i ði ¼ 0; 1; 2; 3; 4Þ

ð5Þ

where Hið~x; tÞ is the distribution function and sH is
the relaxation time for the temperature field, Heq

i ¼
H
5
ð1þ 2:5~ei �~u

c Þ, and T i ¼ D
5
ð1þ 2:5~ei�~u

c Þ. The temperature
and the thermal diffusivity are calculated by

H ¼
X4

i¼0

Hi; D ¼ 2c2

5
sH �

1

2

� �
Dt ð6Þ

It should be noted that the other lattices could also be used
for Eq. (5), say d2q4 in Ref. [14]. It was found that the
TLBGK with d2q5 has better numerical stability than that
with d2q4 for the flows considered here.

For the boundary schemes, the non-equilibrium extra-
polation method for the velocity and pressure boundary
conditions [14,17] are used.

2.2. The LES Smagorinsky model [2]

As to the turbulent convection at high Ra, the subgrid
scale effect of turbulence on the resolved flow field is calcu-
lated by eddy viscosity mt and turbulent thermal diffusivity
Dt = (mt/Prt), where Prt is the turbulent Prandtl number. So
that the LES Smagorinsky model was implemented, with
modification to capture the buoyancy forces due to the
temperature gradients. Thus,

mt ¼ ðCDÞ2 jSj2 þ Pr
Prt

rH � ~gj~gj

� �1=2

ð7Þ

The first term in Eq. (7) represents stress forces while the
second term represents buoyancy. The constant C is called
the Smagorinsky constant and is adjustable. In our case, we
take C(=0.1) which is the same as in Ref. [2], whereas Prt is

set to 0.4. And D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxÞ2 þ ðDyÞ2

q
is the filter width, Dx

and Dy are the grid spacings in the x- and y-directions.

jSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SabSab

q
is the magnitude of the large scale strain

rate tensor with Sab ¼ ð@a�ub þ @b�uaÞ=2, where the over
bar indicates filtered values.
2.3. The TLBGK based model on LES

It is easy to implement the LES Smagorinsky model into
the LBGK model [18–20]. Following the idea of LES, we
assume that the collision steps in the LBGK model only
correlate with some local information and the forms of
the filtered equilibrium distribution are all the same as in
Eq. (3), except now we will use the filtered quantities to
replace the unfiltered quantities. In addition, considering
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the local eddy viscosity effect, we will incorporate the Sma-
gorinsky eddy viscosity mt into the relaxation time s~u.

Since the spatial dependence of the relaxation time s~u
will not change the Chapman–Enskog expansion proce-
dure [26] and does not affect the derivation of the
Navier–Stokes equations, using the equation for kinetic
viscosity in Eq. (4), we still have

mtotal ¼
c2

3
s~u �

1

2

� �
Dt ¼ m0 þ mt ð8Þ

where mtotal is the total viscosity, m0 is the initial kinetic vis-
cosity. Assumed s0 ¼ 3m0

c2Dt þ 1
2
, from Eq. (8) we can get

s~u ¼
3mtotal

c2Dt
þ 1

2
¼ 3ðm0 þ mtÞ

c2Dt
þ 1

2
¼ 3m0

c2Dt
þ 1

2
þ 3mt

c2Dt

¼ s0 þ
3mt

c2Dt
ð9Þ

Next we will explain how to obtain mt based on the LBGK
model. Assumed Q ¼

P8
i¼0eiaeibð�gi � �geq

i Þ, then (see Appen-
dix A for details)

jSj ¼ 3

2s~uDt
jQj ð10Þ

Substituting Eq. (10) to Eq. (7) for the modified Smagorin-
sky eddy viscosity mt, then

mt ¼ ðCDÞ2 9

4s2
~uDt2
jQj2 þ Pr

Prt

rH � ~gj~gj

� �1=2

ð11Þ

Eq. (9) can be changed to

stotal ¼ s0 þ
3ðCDÞ2

c2Dt
9

4s2
~uDt2
jQj2 þ Pr

Prt

rH � ~gj~gj

� �1=2

ð12Þ

As for the isothermal turbulent flow ($H = 0), from the
above equation, we can get

s~u ¼
s0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 þ 18C2jQj

q
2

ð13Þ

However, Eq. (12) is generally difficult to solve. In our
numerical simulations, for simplicity, the values of s~u in
the right hand of Eq. (12) are just substituted by those in
the preceding time step. Then we can directly obtain s~u
for the current moment from Eq. (12).

For the temperature field, the thermal diffusivity D in
Eq. (6) is replaced by Dtotal, which still satisfies

Dtotal ¼
2c2

5
sH �

1

2

� �
Dt ð14Þ

By analogy with Eq. (9), we can obtain

sH ¼ sH0 þ
2:5Dt

c2Dt
¼ sH0 þ

2:5mt=Prt

c2Dt
ð15Þ

where sH0 ¼ 2:5D0

c2Dt þ 1
2
. And then the value of sH in Eq. (5)

can be renewed.
It is obviously that the only change to the previous

TLBGK model happens on the relaxation time, s~u and
sH. For the renewed relaxation time has become the func-
tion both of space and time, the TLBGK model based on
LES is no longer a model with single-time-relaxation
approximation which accords with the characteristics of
turbulence of the highly locality.

3. Numerical results and discussion

Using the TLBGK model based on LES, we simulate
natural convection in the square cavity due to internal heat
generation for Ra 106–1013 with Pr of 0.25 and 0.6 for all
cases. The lattice size is 256 · 256 for Ra from 106 to
1012. But only in the case of 1013, we use a 512 · 512 grid
to improve the resolution. The initial relaxation parameter
x0 ¼ s�1

0 is set to be the same as in Ref. [17]. Generally, the
LBGK method will become unsteady when x0! 2 which
limit it to simulate relatively low Reynolds flow. In Ref.
[17], the TLBGK model is helpless when Ra > 1012(x >
1.991) because of the numerical instability. As for our
TLBGK model based on LES, the simulation results have
proved it to keep stable even when x0 = 1.998. Considering
the physical signification as well as the numerical stability,
the TLBGK model based on LES is more fit for high Ra
flow.

3.1. Isotherms for Ra 106–1013

Fig. 1 presents snapshots of the temperature field for dif-
ferent combinations of Ra and Pr at the end of the dimen-
sionless simulation time T.

From Fig. 1(a) and (b) we can see that for Ra = 106 and
Ra = 107, steady-state conditions are both reached at the
end of the simulations, and the horizontal symmetries are
preserved.

In Fig. 1(c) we show the temperature fields for Ra = 108

obtained at time T = 0.1 after 105 time steps. The symme-
try of the fluid circulation is broken, and steady-state con-
ditions are not reached at the end of the simulation. The
turbulence first appears at the side and upper boundaries,
whereas the fluid flow in the lower region of the simulation
domain stays symmetrical.

In Fig. 2(a) for Ra = 109 (at T = 0.05), the flow struc-
ture becomes more complicated. The Rayleigh–Taylor
instabilities at the upper and Kelvin–Hemholtz instabilities
at the side boundaries extend the local instabilities to the
whole domain. At the same time, the heat transfer at the
bottom becomes intense, especially in the lower corner of
the simulation domain. Although the symmetry is broken
at such Rayleigh numbers, the flow is still a transition to
turbulence. When Ra = 109, the effect of Pr becomes dis-
tinct. From Fig. 2(a) we can see, the influence of the ther-
mal on the upper wall for Pr = 0.60 is intense but local,
whereas the influence is more global for Pr = 0.25. How-
ever the heat transfer on the bottom shows even more
instability for Pr = 0.25.

In Fig. 2(b) for Ra = 1011 (at T = 0.015), heat transfer
on the boundaries of the simulation domain exhibits large
random-like peaks, and some small localized patches have



Fig. 1. Isotherms: Pr = 0.25 (left) and Pr = 0.60 (right). (a) Ra = 106, (b) Ra = 107, (c) Ra = 108.
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occurred in the vicinity of the boundaries. However, in the
middle of the simulation domain, the large-scale flow struc-
tures still dominate.

When the Ra is increased to 1013 (Fig. 2(c)), the entire
simulation domain becomes irregular and chaotic. The
small-scale structures become increasing and much finer.
Filaments and patches of thermal anomalies distribute
everywhere which are the characteristics of turbulence. It
can be concluded that with a further increase of Ra, the
flow becomes even more turbulent. The flow structures of
Pr = 0.60 resemble those of Pr = 0.25 which indicate Pr
does not significantly influence the time to reach the turbu-
lent conditions.

3.2. Time-boundary-averaged Nusselt numbers

To quantify the results, the time-boundary-averaged
Nusselt numbers [2] obtained by our TLBGK model based
on LES are plotted in Fig. 3, including those in Refs. [2,17].
It can be found that our results for Ra 6 109 agree well



Fig. 2. Isotherms (continued): Pr = 0.25 (left) and Pr = 0.60 (right). (a) Ra = 109, (b) Ra = 1011, (c) Ra = 1013.
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with those in Refs. [2,17], which verifies and validates our
model. With the increasing of Ra, the effect of the eddy vis-
cosity mt becomes significant so that the deviations of Nu

between different models on the boundaries set in. On the
other hand, it was observed that different Pr will have dif-
ferent effects on the average Nu. A higher Pr enhances heat
transfer through the upper and side boundaries, while at
the bottom surface of the enclosures a lower Pr enhances
heat transfer. Whereas, all the effects are further strength-
ened at higher Ra(P1011) for the deviations become
increasingly distinctive. Table 1 presents the values of the
time-averaged Nu on the upper surface (Nuup) and the
relative errors both of our model (TLBGK+LES) and
TLBGK model (Ref. [17]) against LES (Ref. [2]). From
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Fig. 3. Ra vs. Nu: (a) on the upper boundary, (b) on the bottom boundary, (c) on the left boundary.

Table 1
The value of Nuup for different Ra and the relative errors

Ra Pr = 0.25 Error Pr = 0.60 Error

108 TLBGK + LES 24.6379 �0.0605 26.5248 �0.0588
TLBGK (Ref. [17]) 23.6292 �0.0990 25.1965 �0.1059
LES (Ref. [2]) 26.2258 – 28.18223 –

109 TLBGK + LES 38.0221 0.0178 40.4491 �0.0442
TLBGK (Ref. [17]) 33.6443 �0.0994 39.0489 �0.0773
LES (Ref. [2]) 37.3588 – 42.3216 –

1011 TLBGK + LES 84.9468 �0.1436 91.2110 0.0104
TLBGK (Ref. [17]) 84.3260 �0.1499 99.3080 0.1001
LES (Ref. [2]) 99.1952 – 90.2684 –

1012 TLBGK + LES 119.4721 – 134.9829 –
TLBGK (Ref. [17]) – – 144.0363 –

1013 TLBGK + LES 125.2459 – 167.7215 –
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the table we can also find the values of Nuup increase when
Ra and Pr increase. Contrasting with the TLBGK model,
the relative errors of our model against LES are obviously
improved.

In Ref. [24], a table of the Nu(Ra) relationship on the
cooled surface in many geometries was presented and one
can see that the relationships between Nuup and Ra for
the upper surface are quite similar to different geometries,
which approximately hold Nuup � Ra0.20�0.235 with Ra up
to 1016. In our simulations, for Ra from 109 to 1011, we find
Nuup � Ra0.1746 at Pr = 0.25 and Nuup � Ra0.1766 at Pr =
0.60. While Ra is between 1012 and 1013, we yield Nuup �
Ra0.1018 at Pr = 0.25, and Nuup � Ra0.1811 at Pr = 0.60.
Hence, even when Ra is up to 1013, the exponent can not
reach 0.20. There are two possible explanations to the fact:
the exponent b will have an increase at higher Ra, or the
asymptotic state does not exist at all for the turbulent
motion at high Ra which is too complicated to meet a
simple power-law. Further research should be done at
higher Ra to answer this question.

4. Conclusion

Although the LBGK method has been widely used to
simulate natural convection, this is the first time to com-
bine the thermal LBGK model with the LES Smagorinsky
model to study high Ra thermal convection. Two-dimen-
sional (2D) numerical simulations of natural convection
with internal heat generation in a square cavity at Ra from
106 to 1013 with Pr 0.25 and 0.60 are performed. Our sim-
ulation results agree very well with those published. To our



H. Liu et al. / International Journal of Heat and Mass Transfer 49 (2006) 4672–4680 4679
knowledge, in the previous research work on turbulent nat-
ural convection with an internal heat generation, Ra has
never exceed 1011 with such low Pr(=0.25).

It is well known that the LBGK method has unique
advantages, such as the easy arithmetic, easy implementa-
tion of boundary conditions and intrinsic parallelism. To
simulate the higher Ra flows, the higher resolution is needed,
then we will resort to parallel. As the Smagorinsky model
does not allow any energy backscatter, other more improved
models have been put forward, such as the dynamic Smago-
rinsky model [28]. Combined these new models to our model,
more efficiencies will be gained. Anyway, in possession of the
advantages of both the LBGK method and LES, the
TLBGK model based on LES is a promising one to simulate
turbulent convection at higher Ra.

Our simulation results disclose that at Ra = 1013, a glo-
bal turbulence appears and it can be concluded that with a
further increase of Ra, the flow will reach the full turbulent
regime. The effect of Pr on the heat transfer still exists at
higher Ra and becomes more and more distinctive with
increasing Ra.

As a trial, the Nu(Ra) relations have been discussed. The
exponent b yielded in our simulation does not reach the
reported in existing literatures. As fluid motion becomes
turbulent, three-dimensional (3D) effects become domi-
nant. In fact, there are very few events with sustainable
2D turbulence. Therefore, it is reasonable that the results
will deviate from a real physical picture. Noted that the
TLBGK model can be easily extended to 3D problems,
Our further studies will focused on the issue of the exis-
tence of an asymptotic regime by the investigations of 3D
natural convection problems on even higher Ra flows with
different Pr.

Appendix A. Chapman–Enskog expansion

The Chapman–Enskog expansion parameter is the
Knudsen number �, defined as

� ¼ k
l

ðA:1Þ

where k is the mean free path of the molecules and l is a
typical macroscopic length. The derived equations will only
be valid if the Knudsen number is small.

Expanding the distribution functions and the time and
space derivatives in terms of the Knudsen number

@t ¼ �@1t þ �2@2t; @a ¼ �@1a;

fi ¼ �f1i; gi ¼ gð0Þi þ �g
ð1Þ
i þ �2gð2Þi þ � � �

ðA:2Þ

To perform the Chapman–Enskog expansion we must first
Taylor expand Eq. (2):

DtDigi þ
Dt2

2
D2

i gi ¼ �
1

s
ðgi � geq

i Þ þ Dtf i ðA:3Þ

where Di = ot + oa. Substituting Eq. (A.2) into Eq. (A.3),
we get
�DtD1iðgð0Þi þ �g
ð1Þ
i Þ þ �2Dt@2tg

ð0Þ
i þ �2 Dt2

2
D2

1ig
ð0Þ
i

¼ � 1

s
ðgð0Þi þ �g

ð1Þ
i þ �2gð2Þi � geq

i Þ þ �Dtf 1i ðA:4Þ

where D1i = o1t + o1a. And then, we can obtain the follow-
ing equations in consecutive order of the parameter �:

Oð�0Þ: gð0Þi ¼ geq
i ðA:5aÞ

Oð�1Þ: D1ig
ð0Þ
i ¼ �

1

sDt
gð1Þi þ f1i ðA:5bÞ

Oð�1Þ: @2tg
ð0Þ
i þ

Dt
2

D2
1ig
ð0Þ
i þ D1ig

ð1Þ
i ¼ �

1

sDt
gð2Þi ðA:5cÞ

Eq. (A.5c) can be simplified by Eq. (A.5b):

@2tg
ð0Þ
i þ 1� 1

2s

� �
D1ig

ð1Þ
i ¼ �

1

sDt
gð2Þi �

Dt
2

D1if1i ðA:6Þ

The conservation of mass and momentum require thatX
i

gðkÞi ¼
X

i

c~eiagðkÞi ¼ 0; k ¼ 1; 2 ðA:7Þ

From the equilibrium distribution function Eq. (3) and the
definition of fi, we can obtainX

i

gð0Þi ¼ 0;
X

i

c~eig
ð0Þ
i ¼~u;X

i

c2~ei~eig
ð0Þ
i ¼~u~uþ pI ðA:8aÞ

X
i

fi ¼ 0;
X

i

c~eifi ¼ Prh
~g
j~gj ;

X
i

c2~ei~eifi ¼ 0 ðA:8bÞ

Taking zeroth-order and first-order moments of Eq.
(A.5b), respectively, we can get the following macroscopic
equations on the t1 scale:

@1aua ¼ 0 ðA:9aÞ

@t1~uþ @1bp
0
ab ¼ PrH

~g
j~gj ðA:9bÞ

and where

p0
ab ¼

X
i

c2~eia~eibgð0Þi ¼ uaub þ pdab ðA:10Þ

Taking zeroth-order and first-order moments of Eq. (A.6),
respectively, we can get the equations on the t2 scale:

@t2ua þ @1bp
1
ab ¼ 0 ðA:11Þ

Noted that in incompressible flows

OðdpÞ ¼ OðdqÞ ¼ OðMa2Þ ðA:12aÞ
OðuÞ ¼ OðMaÞ ðA:12bÞ

in the limit Ma! 0, where dp and dq are the pressure and
density fluctuations, respectively. And then, with the aims
of Eq. (A.5b) and Eq. (A.10), the stress tensor p1

ab is given
by
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p1
ab ¼ 1� 1

2s

� �X
i

c2~eia~eibgð1Þi

¼ 1� 1

2s

� �X
i

c2~eia~eibsDtðfi � D1ig
ð0Þ
i Þ

¼ � s� 1

2

� �
Dt
X

i

c2~eia~eibD1ig
ð0Þ
i

¼ � c2

3
s� 1

2

� �
Dtð@1aub þ @1buaÞ þOðMa2Þ

¼ �mð@1aub þ @1buaÞ þOðMa2Þ ðA:13Þ
In the above equation, the terms of order O(u3) or higher
have been neglected. Combining the results on the t1 and
t2 time scales, Eqs. (A9) and (A.10) together with Eq.
(A.11) and (A.13), we now obtain the final macroscopic
Eqs. (1a) and (1b). From Eq. (A.13) , the strain rate tense
Sab is given by

Sab ¼ ð@a�ub þ @b�uaÞ=2 ¼ �ð@1a�ub þ @1b�uaÞ=2

� 3�

2sDt

X
i

~eia~eibgð1Þi

¼ 3�

2sDt

X
i

~eia~eibðgi � gð0Þi Þ=�

¼ 3

2sDt

X
i

~eia~eibðgi � gð0Þi Þ ðA:14Þ
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